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TRANSIENT VIBRATION ANALYSIS OF LINEAR SYSTEMS USING 

TRANSITION  MATRICES 

By Anthony Craggs 
I n s t i t u t e   o f  Sound  and Vibration  Research 

University  of  Southampton. 

ABSTRACT 

A s t e p  by s tep   Trans i t ion   mat r ix  method i s  presented   for   so lv ing  a 
s e t  o f  equations of motion. The s t a b i l i t y   c r i t e r i a  which  govern  the  choice 
o f   s t e p   s i z e   a r e   g i v e n   i n   t h e  first pa r t   o f   t he   r epor t :   t hese   a r e   r e l a t ed   t o  
the  highest  eigenvalue  of  the  system  under  consideration. The use  of   the 
technique   for   eva lua t ing   the   response   to  a s e t   o f   f o r c e s  and  prescribed  motions 
i s  g iven   i n  a theo re t i ca l   d i scuss ion .  Using t h e   f i n i t e  element  displacement 
procedure t o   i d e a l i s e   t h e   s t r u c t u r e   t h e  method has   been  appl ied  to   several  
rectangular   plate   problems and  good agreement i s  obtained  between  theoretical  
and  experimental   resul ts .  The r e s u l t s  for the   t ransient   motion  of  a simply 
supported  plate   are  compared w i t h  similar resu l t s   ob ta ined  by using a s tandard 
4th  order  Runge Kutta  procedure and it i s  shown t h a t   t h e   t r a n s i t i o n   m a t r i x  
so lu t ions   a r e  more accurate ,   and  there  i s  a l s o  a subs t an t i a l   dec rease   i n   t he  
computation  time  per  step. 

INTRODUCTION 

A t  the   present   t ime much work i s  being  carr ied  out  on the  approximate 
formulation of the  equat ions of  motion i n  problems of s t r u c t u r a l  dynamics. If 
the  problem i s  formulated  in  terms of  the  system  displacements  and  the  system 
i s  l i nea r   t hen   t he   r e su l t i ng   equa t ions  may be  expressed  in  the  matrix  form: 

M i  + D$ + Kx = $t)  (1) 

where M ,  D and K are  square  symmetric  matrices,  and  are column vectors  
represent ing   the  unknown displacements  and  the known forcing  function  respective- 
l y .  When obtaining a s o l u t i o n   t o   t h i s   e q u a t i o n ,  most  of t h e  work has  been i n   t h e  
frequency domain; e i t h e r   f o r   t h e   c a s e  where t h e   s t r u c t u r e  i s  i n  a s t a t e   o f   f r e e  
v ib ra t ion ,  or, for   the   response   o f   the   s t ruc ture   to  a harmonic  forcing  function. 
The so lu t ion   i n   t he   t ime  domain may be achieved by t h e  now standard  numerical 
techniques - namely, Runge Kutta  and Adams (1) or by t h e  less sophis t ica ted  
engineering  methods  suggested  by Timoshenko ( 2 )  and Newmark ( 3 ) .  While these  
methods a r e   g e n e r a l   i n  t h a t  they  may also  be  applied  to  non-linear  systems, 
when t h e y   a r e   a p p l i e d   t o  a set   of   equat ions of  the   type  shown above they do 
n o t   u t i l i z e  the f a c t   t h a t   t h e   m a t r i c e s  M y  D and K are constant,  and conse- 
quent ly   lose  a s ignif icant   advantage.   This   report   deals   with  the  s tep by s t e p  
method  which  does u t i l i z e   t h e   f a c t  and makes an ind i rec t   use   o f   the   Taylor  
s e r i e s .  
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The Taylor series is  first used t o  deduce a recur rence   re la t ionship  
which, f o r  f r ee   v ib ra t ion ,   g ives   t he   r e sponse  a t  one s t e p   i n   t e r m s  of t h e  
response a t  a previous  s tep  by means of a Trans i t ion   mat r ix .  When the  system 
i s  forced it i s  necessary   to   add   fur ther  terms i n  the recur rence   re la t ionship ,  
t h e   a c t u a l  number depending upon the   na ture   o f   the   forc ing   func t ion .  However, 
i f  t h e   s t e p   s i z e  i s  small compared wi th   t he   l a rges t   pe r iod  of the  system it i s  
su f f i c i en t   t o   i nc lude   on ly  one  a.dditiona1 term. The advantages  of  the method 
over   the  s tandard  techniques  are  a substant ia l   decrease  in   computat ion  t ime 
and  an increase   in   the   accuracy   of   the   so lu t ion  i f  a high  order   Taylor   Ser ies  
i s  used in   eva lua t ing   the   Trans i t ion   mat r ix .  

A s  with  the  other   s tep-by-step  proced.ures   the  s tep  s ize   cannot   be 
chosen   a rb i t ra r i ly :  it i s  usua l ly  some f rac t ion   of   the   smal les t   per iod  of  
the  system;  otherwise  the  numerical   solution becomes unstable .  The s t a b i l i t y  
condi t ion  for  a d i f f e r e n t  number of  terms of  the   Taylor   Ser ies  may be  found  by 
considering a danped single  degree  of  freedom  system;  this  aspect i s  covered 
i n  t h e  first sec t ion   o f   t he   r epor t .  

A genera l   p rocedure   for   de te rmining   the   response   to  an a r b i t r a r y  
forc ing  pulse and  prescribed  bomda.ry  motion i s  given  and  this i s  expressed 
concisely i n  terms  of   matr ix   operat ions.  The theory i s  a p p l i e d   t o   s e v e r a l  
examples  using  the  finite  element  displacement  technique t o   i d e a l i s e   t h e  
s t r u c t u r e ,  and  good  agreement i s  obtained  where a comparison  has  been made 
with some experimental  work. 

SYMBOLS 

W displacement  response 

displacement  response column vector  

column vector  containing  displacement  and  velocity  response  vector 

displaxement  vector  for cGupled  system 

force  column vector 

force column vec tor   for   coupled   sys te~ .  

c o l m  vector   containing  force and force   t ime  der iva t ive   vec tors  

square mass matr ix  

square  dmping  matrix 

square   s t i f fness   mat r ix  

square  Transi t ion  matr ix   for   response  terms 
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square  Transi t ion  matr ix  for forcing terms 

rectangular  Boolean  transformation  matrix  relating  element  coordinates 
t o   t h e   o v e r a i l  system  coordinates 

un i t   ma t r ix  

s t e p   s i z e  

complex t r a n s f e r   t e r m  

angular   natural   f requency,  undamped system 

c r i t i c a l  damping f ac to r  

Young's  modulus 

p l a t  e dens i ty  

Po i s son ' s   r a t io  

p l a t e   t h i ckness  

Hermitian  interpolation  polynomials 

kinet ic   energy 

s t ra in   energy  

term whose va r i a t ion   g ives   t he  work done by the   ex te rna l ly   appl ied  
forces  i n  a virtual  displacement 

overall   dimensions  of  rectangular  plate  element 

j , n,  r in tegers  

a damping f a c t o r  where damping matrix i s  p r o p o r t i o n a l   t o   t h e  
s t i f f n e s s   m a t r i x  ( a  < 1) 

STABILITY  CRITERIA 

I n  this  d iscuss ion   there  i s  nothing t o  be  gained by deal ing with a 
set of   d i f fe ren t ia l   equa t ions   o r   forced   v ibra t ion .  All of   t he   r e l evan t  
po in ts  are brought  out by considering  the  equation  of  motion  of a s ing le  
degree  of  freedom  system: 

; ; + 2 $ X i r + A w = O  2 
( 2 )  

The exac t   so lu t ion   to   th i s   equa t ion   has   the  form w = Wem where  both W 
and 0 a r e  complex quan t i t i e s .  
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In   the  numerical   procedure f o r  so lv ing  ( 2 )  t h e   s o l u t i o n  moves forward i n  a 
number of small s teps   and ,   wi th in   each   s tep ,   the   so lu t ion  i s  obtained  by 
using  only a f i n i t e   n w b e r  of terms of   the   Taylor   Ser ies .  It w i l l  be shown 
t h a t  i f  t h e   s t e p   s i z e   d o e s   n o t   s a t i s f ' y   c e r t a i n   d r i t e r i a   t h e   s o l u t i o n  w i l l  
become unstable .  The Taylor   Ser ies   gives:  

w ( t  + h )  = w ( t )  + hG(t)  + h2G(t)/2! + h3?7'(t)/3! + h w ( t ) / 4 !  4 .... 
where h i s  t h e   s t e p   s i z e .  

S u b s t i t u t i n g   f o r  w and c y  e t c .  from the   exac t   so lu t ions   then  

w ( t  + h ) / w ( t )  = (1 + Rh + a2h2/2! + 0 h /3! + R h /4! + . . . I  
w ( t  + nh) /w( t )  = {1 + h + R h /2! + R3h3/3! + R h /4! + In 

3 3  4 4  
2 2  4 4  

The term Z i s  complex and for s t a b i l i t y   t h e  modulus  of th i s   quant i ty   should  
b e   l e s s   t h a n   o r   e q u a l   t o  1; otherwise   the  estimate w i l l  always become g r e a t e r  
wi th   the  number o f   mu l t ip l i ca t ions .  To de te rmine   t he   e f f ec t   o f   s t ep   s i ze  
values   of  IZ I have  been computed using a d i f f e r e n t  number of  terms o f  t h e  
Taylor   Ser ies ,  and var ious  values   of   the  damping f a c t o r  between B =  0.0 and 
B =  0.2. Some o f   t h e   r e s u l t s   o f   t h e s e   c a l c u l a t i o n s   a r e   p l o t t e d   i n   F i g .  1 and 

Fig.  2.  These show t h a t  above a ce r t a in   va lue  of Ah, IZ I becomes g r e a t e r  
than  unity.   This  value i s  and d i f f e r s   w i th   t he   o rde r   o f   t he   Tay lo r  

Series  used. A summary o f   t he   c r i t i ca l   va lues   o f  Ah i s  given  in  Table 1. 
In   gene ra l ,  it shows t h a t   t h e   i n c r e a s e   i n   s t e p  s i z e  i s  allowed  with  an  increase 
i n   t h e   o r d e r   o f   t h e   s e r i e s .  However, t h e r e  i s  a f a l l  o f f   i n   t he   advan tage  
gained where 6th  and  7th  order   ser ies  are used.  There i s  a fur ther   ga in   wi th  
an 8 th   o rde r   s e r i e s .  

' her i t  

For  systems  with  further  degrees  of  freedom  the  step  size w i l l  need 
t o  be   re la ted   to   the   h ighes t   e igenvalue  h i . e .  a f rac t ion   of   the   smal les t  

V Y  

per iod,  and  provided h h < Ahcrit then   the  method w i l l  be   s tab le .   This  i s  

one of   the  unfortunate   aspects   of   s tep-by-step methods as of ten   the   response  
i s  dominated by the  lower modes of   v ibra t ion ,   and   for  good r e s o l u t i o n   t h e  
s t e p   s i z e  would only  need t o  be a f r ac t ion   o f   t he   l a rges t   pe r iod .  

V 

The condi t ions which  govern the   va lue   o f  Ahcrit only  guarantee a 

so lu t ion  which  does not   diverge,   they do not   necessar i ly   guarantee a good 
approximation t o   t h e   t r u e   s o l u t i o n ,   t h e r e f o r e  a c r i t e r ion   fo r   accu racy  i s  
needed.  This was achieved  in  a h e u r i s t i c  manner  by comparing t h e  computed 
values of I Z I  wi th   the  exact  I Ze I value  given by 

In  Fig.  1, (B = O.O),  the   exac t   va lue  i s  t h e   h o r i z o n t a l   l i n e  a t  Z = 1.0. I n  
Fig. 2 ( e=  0 .2 ) ,   t he   exac t   so lu t ion  i s  shown as a d o t t e d   l i n e .  It may be 
seen   t ha t  when Ah i s  small t h e  computed curves l i e   c l o s e   t o   t h e   a c t u a l  
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so lu t ion ,   bu t  after a cer ta in   value Ah the  curves   tend  to   diverge from 

t h e   t r u e   s o l u t i o n .  The approximate  solutions w i l l  then behave as though  the 
system i s  more or less damped than it a c t u a l l y  i s  depending upon whether IZ I 
i s  above or below I Z  l e .  A set of  curves similar t o  Fig. 1 and Fig. 2 has 

been made f o r  B = 0.0002,  0.002  and 0.02; t hese   a r e   no t   p re sen ted   i n   t he  
paper. The average  values  for are shown i n  Table 3. It may be  noted 
t h a t  for t h i s   c r i t e r i o n   t h e r e  i s  always  an  improvement  with an i n c r e a s e   i n   t h e  
order   of   the   Taylor   Ser ies .  

ac c 

Ahacc 

THE APPLICATION  OF THE TAYLOR SERIES TO SYSTEMS WITH MANY DEGFEES  OF  FREEDOM 

The usual  use  of  Taylor  Series  involves  the  calculation  of a number of 
higher   der ivat ives  at each  s tep,   the  number depending upon the  order   of   the  
s e r i e s .  For some equa t ions   t h i s  m a y  be a ser ious  drawback as the   de r iva t ives  
may t u r n  out t o  be  complicated  functions. However w i t h  a l i n e a r  system  the 
var iab les  have cons tan t   coef f ic ien ts  and t h i s   l e a d s   t o  a substant ia l   s impli-  
f i c a t i o n  as a l l  of   the  higher   der ivat ives  may be more easi ly   expressed i n  terms 
of the displacement  and  velocity by repea ted   subs t i tu t ion   in to   the   equat ion   of  
mot ion.  

The equation  of  the  system may b e   w r i t t e n   i n   t h e  form 

By success ive   d i f f e ren t i a t ion   o f   t h i s   equa t ion  w i t h  r e spec t   t o   t ime ,  
t h e  n t h   d e r i v a t i v e  of w may be w r i t t e n   f o r  n 2 2. 

This  equation w i l l  now be  used t o  express  every  term i n  t h e   s e r i e s  i n  terms  of 
displacement and ve loc i ty .   In  what fol lows  the  case  of   f ree   vibrat ion i s  con- 
s idered f i r s t  and it i s  shown t h a t  the  response at one s tep  i s  r e l a t e d   t o  tha t  
of   the  previous  s tep by a s ingle   Trans i t ion   mat r ix .  The mod i f i ca t ion   t o  t h i s  
recur rence   re la t ionship  due to   the   forc ing   te rm i s  then  considered i n   t h e   n e x t  
s t  age. 

Free  Vibration 

Now, by repeated  appl icat ion  of   equat ion ( 5 )  the  second  and  higher  derivatives, 
all of   the  terms on t h e   r i g h t  hand s ide  of these  equations may be   wr i t t en   i n  
terms of  the  displacements and v e l o c i t i e s  xr and tr:- 
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The values of Tll w i l l  depend upon t h e  number of  terms used  and  the 

va lue   o f   the   s tep   s ize   h .  The actual  expressions  have  been  avoided as these  
are complicated.   In  practice  they w i l l  be   sys temat ica l ly   eva lua ted   ins ide  
t h e  computer. 

The matr ix  T i s  the  Transi t ion  matr ix   which may be  computed t o  any 
order   wi th in   the   capac i ty   o f  a computer. It i s  important t o   n o t e   t h a t  once 
it has  been  found a higher  order  Transit ion  matrix w i l l  not   require  any longer 
computing time than one  of a lower  order when generat ing  the  response.  The 
r e sponse   t o  a given set  o f   i n i t i a l   c o n d i t i o n s  {wo> i s  given  by 

where 

IJi -I 
To i l l u s t r a t e   t h e  method t h e   s o l u t i o n   f o r  an undamped 
using a 4th  order  T matrix.  These were compared with 

o s c i l l a t o r  was found 
the  exact   solut ion and 

solut ions  obtained by o ther  methods obtained from re f .  ( 4 ) .  The equation 
considered was i j  + w = 0, a s t e p  s i z e  of h = 0.25 w a s  u s e d ;   t h i s   s a t i s f i e d  
t h e   s t a b i l i t y   c r i t e r i o n  Ah < 2.8  and t h e  c r i t e r i o n  for accuracy Ah < 1.0,  
as A = 1.0. The appropriate   Transi t ion  matr ix  and the   response   genera ted   to  
a un i t   i n i t i a l   d i sp l acemen t  i s  shown i n  Table 3. This  computed response i s  
a lmost   ident ica l   to   the   exac t   so lu t ion   to   four   dec imal   p laces .  

Forced  Vibration 

For  conciseness only a 4 th   o rder   descr ip t ion  o f  t he   fo rc ing  i s  con- 
s idered.  The e x t e n s i o n   t o  a higher  order w i l l  be   c lear .  

The equation o f  motion i s  

It may be shown af ter  subs t i t u t ion  of  equation ( 8 )  i n   t h e   T a y l o r   S e r i e s   t h a t  
terms in  displacements and v e l o c i t i e s  are separate  from  the  force terms and 
the  resul t ing  equat ions  for   the  responses  are:- 
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In   genera l ,  it i s  d i f f i c u l t   t o   s p e c i f y  the  der ivat ives   of   the   forcing  funct ion.  
However, i f  t h e  s t e p   s i z e  i s  small, which it usual ly  is  t o   s a t i s f y   t h e   s t a b i l i t y  
condi t ion ,   then   the   e f fec ts   o f   these  are neg l ig ib l e  and it i s  then   su f f i c i en t  
t o  wri te  the  r e l a t ionsh ip  for 2: 

Exact  solutions may be b u i l t  up i f  F has t h e  form e kt s i n  k t ,  cos k t  
because  then [A] may be formed t o  the  same accuracy as' [T] . 

The response i s  generated  by  repeated  application  of  equation (10) 
it may be shown by s u b s t i t u t i o n   t h a t :  

Response to   P re sc r ibed  Boundary  Motions 

Often the  sys tem  tha t  i s  under  consideration,  forms  part  of a much 
larger  system,  e.g.  a window i n  a bui ld ing  w i t h  t h i c k  walls. When t h i s  i s  
the   ca se   t he  dynamic f l e x i b i l i t y   o f  t h i s  "minor" system i s  such tha t  when 
d i s t o r t e d   t h e   r e a c t i n g   f o r c e s  are i n s u f f i c i e n t  t o  produce  any  significant 
e f f e c t  on t h e  'major  system'. When the  major  system i s  dis turbed it w i l l  
fo rce   the   boundar ies   o f   the  minor system t o  move with it. In   s tudy ing   t he  
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minor  system it i s  necessary  to  solve  for  these  prescribed  boundary  motions.  

The equation i s  deduced by consider ing f irst  the   response   o f   the  
system(in  the  unconstrained. .-tate) t o  a s e t   o f   f o r c e s   l o c a t e d  a t  t h e   p r e s c r i b e d  
coordinates.  It i s  then  convenient   to   arrange  the  equat ions  in   the  form: 

where t h e   s u f f i c e s  p and f r e f e r   t o   p r e s c r i b e d  and free  displacements .  
p a r t i t i o n i n g   t h e  mass and s t i f fnes s   ma t r i ces   g ives  

Mul t ip ly ing   th i s   ou t  

1'9 
gives 

+ 

t h e  two equations 

Equation (12)  g ives   the   mot ion   of   the   f ree   coord ina tes   in   t e rms   of   the  known 
displacement w and t h e   s o l u t i o n   f o r  a t rans ien t   d i s turbance  may be   wr i t ten  

'LP 
i n  terms  of  Transit ion  matrices 

The equation shows t h a t   t h e   f r e e   c o o r d i n a t e s   a r e   e x c i t e d   t h r o u g h   i n e r t i a  and 
s t i f fness   coupl ing  terms.  If a lumped mass idea l i sa t ion   o f   the   sys tem i s  made, 
r e s u l t i n g   i n  a diagonal mass matr ix ,  no ine r t i a l   coup l ing  w i l l  t ake   p l ace  
bec  aus e [Mfd i s  then a nu l l   ma t r ix .  

Coupling  of  Transit ion  Matrices 

It may be   usefu l   to   de te rmine   the   Trans i t ion   mat r ix   for  a coupled 
system from a knowledge o f   t h e   t r a n s i t i o n   m a t r i c e s  of the  subsidiary  systems. 
The procedure  for this i s  an  approximation  only,  giving good r e s u l t s   o n l y  i f  
t h e   s t e p   s i z e  i s  s u f f i c i e n t l y  small. 
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These  two equations may now be   wr i t ten  as a s ingle   matr ix   equat ion 

i . e .  

If the  systems  are now l inked   toge ther ,  s o  tha t   ce r t a in   coo rd ina te s   a r e  common, 
the   app l i ed   fo rces   r e l a t ive   t o   t he   coup led   sys t em  a re   r e l a t ed   t o   t hose   o f  the 
independent  systems  by  the  Boolian  matrix B, i .e.  

%+l 
- 
- II.1 % + LI$l& 

TI Q = [B]5 
and for   compatabi l i ty ,  

w TI = [BIT% 

Then s u b s t i t u t i n g   f o r  IC, 

The merits o f   t h i s   fo rmula t ion  have t o  be  evaluated and it may only  be  useful 
when small add i t ions   a r e  made t o  a larger  system. 

9 

I " . - 



USE OF FINITE EL;EMENTS I N  FORMING  TRANSITION  MATRICES  FOR  PLATE'SYSTEMS 

The equation o f  motion o f  a s t r u c t u r e  may be formulated  from 
Hami l ton ' s   va r i a t iona l   p r inc ip l e :   t h i s  states t h a t  between  two i n s t a n t s  
of time tl and t the  motion  proceeds  in   such a way t h a t  2 

Jt  

(TE" VE + BE) = o 

where TE i s  the   k ine t ic   energy ,  VE t h e   s t r a i n   e n e r g y  and BE a funct ion 
whose va r i a t ion   g ives   t he  work done by t h e   e x t e r n a l   f o r c e s   i n  a v i r t u a l  
displacement ( 5 ) .  Mason ( 6 )  u s e s   t h e   f i n i t e  element  displacement  technique 
and  invokes t h i s   p r i n c i p l e   t o  form t h e  mass and s t i f f n e s s   m a t r i c e s   f o r   p l a t e s .  

An o u t l i n e  of t h e   f i n i t e   e l e m e n t s   a d a p t e d   t o   t h i s   p r e s e n t   r e p o r t  i s  
given  below and i s  fu l ly   desc r ibed  i n  (6 ) .  The method cons is t s   o f   d iv id ing  
t h e   p l a t e   i n t o  a number of   rectangular   e lements ,   the   displacement   in   each 
element i s  then  given by a number of assumed modes and t h e   c o e f f i c i e n t s   o f  
each mode are   re la ted  to   the  nodal   displacements .   Here,  4 unknowns per  element 
corner  were  used;  these  were w, aw/ax,  aw/ay,  a2w/axay. The assumed  modes 
were b u i l t  up from the  following  polynomials f . ( t )  having   the   p roper t ies  

1 

f ( O )  f ' ( 0 )  f(1) f '  (1 1 
fi' E )  = 1 - 3E 2 + 2E 3 

f 3 ( E )  = 3E2 - 2 E  3 

f 4 ( d  = 3 2 
E -  E 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

The element  displacement i s  given by 

There a r e   t h e r e f o r e  16 unknowns a. and  because  of  the  above  properties  of 
f .  (x), each unknown may be expresses In  terms  of  one of  the  nodal  displacements 

and t h e  element  dimensions a , b . The element  displacements may then  be 
convenient ly   wri t ten 

j t  
1 

m 

w(x, Y )  = 

where {we) i s  a column vector  (16 x 1) con ta in ing   t he  4 nodal  displacements: 

b -  aw ab - w, a - { fx fy )  i s  a vec tor   conta in ing   the  1 6  polynomial aw 
ax' ay'  axay 

a 2~ 

expressions.  
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Mass and S t i f f n e s s  Matrices 

The derivation  of  the  element mass and s t i f f n e s s   m a t r i c e s  i s  found 
from the   var ia t ion   o f  and VE respect iveiy.  The procedure i s  given i n  
( 6 ) .  

The mass mat r ix   for  a rectangular  element  of  dimensions a ,  b i s  :- 

The s t i f f n e s s   m a t r i x  is 
b a  

E t h 3  {f"f }{f"f )T + {f f"}{f f"IT + V{f"f 1 {f f"lT 
12(1 - U' 2 ) lo I, X Y   X Y   X Y  X Y   X Y  X Y  

+ V { f  f"}  {f"f IT  + 2(1 - k )  {f;fi}{f'f  '}T)dxdy 
x y  X Y  X Y  

If there  i s  a pressure   d i s t r ibu t ion   F(x ,   y ,  t )  acting  over  the  element  the 
function BE i s  given by 

BE = [l [:(X, Y )  F(x, Y ,  t ) b d y  

but T 
w(x, y )  = {we} {fxfy} 

b a  
therefore  

BE = {weIT !{fxfyl F(x,  Y, t ) h d y  

0 0  
The forcing  vector  i s  found by the   var ia t ion   o f   th i s   quant i ty  w i t h  respecLto 

the  nodal  displacements w, ax, e t c .  aw 
rb ra 

where F yd i s  a diagonal  matrix  with  the  following  non-zero  terms  in  the  order 

k , a , b , a b , l , a , b a b , l , a , b , a b , l , a , b , a b J  

In   gene ra l   t hese   i n t eg ra l s  may be  quite  complicated  especially  for 
t r a v e l l i n g  waveforms.  For the  purpose  of   this   report   only  s imple  funct ions 
of F were  used: 

( a )  If F i s  a uniform  pressure  normally  incident on t h e   p l a t e   t h e   f o r c i n g  
vec to r   fo r  an element i s  

11 
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F. = F ( t )  By., 
%l 

0 0  
( b )  If F i s  a poin t   force  at t h e   p o s i t i o n  x, y ,  

'L1 
F. = F ( t )  hyj  I f x  , f Y  

I 

The equat ions  of   motion  for   the  complete   plate  are obtained  by 
assembling  the  element  matrices  by  applying  the  conditions  of  compatabili ty 
and dynamic equilibrium  along  the  element  boundaries.  Where the   coord ina tes  
are common the   coef f ic ien ts   o f   the   e lement  mass and s t i f f n e s s   m a t r i c e s  and 
forcing  vectors  are addi t ive .  The procedure  for  assembling  element  matrices 
i s  descr ibed   in  ( 6 ) .  The damping matr ix  was assumed t o   b e   v i s c o u s  and 
given by a constant times t h e   s t i f f n e s s   m a t r i x .  

The equation of motion  of  the damped system is then   o f   t he  form 

Mi + aK$ + Kx = x 
usual ly  c1 << 1. I n   t h i s  way, t h e  damping does  not  couple  the  normal modes, 
and t h e   c r i t i c a l  d.amping f a c t o r ,  6 ,  is  l a r g e r   f o r   t h e  modes with  highest  
na tura l   f requencies .  

Construction  of  the  Transit ion  Matrices [TI and [A] 

Before a p a r t i c u l a r   t r a n s i e n t   v i b r a t i o n  problem  could  be  solved it 
was necessary first t o  determine  the T and A ma t r i ces   fo r   t he   g iven  
configuration and s tep-s ize ,   h .  The A matr ix  was ca lcu la ted  by carrying 
out   the   mat r ix   opera t ions   ind ica ted   in   equa t ion  ( 9 ) .  When computing t h e  T 
matrix  use was made of   the  equat ion:  

i , e .  t he  j t h  column of T i s  found by post-multiplying T by a column 
v e c t o r   i n  which t h e  j term i s  uni ty ,   the   remaining  terms  being  zero.   {Tj)  

may be  found  therefore  by  using  the  Taylor  Series and equation ( 5 )  f o r   t h e  
second  and  higher  derivatives t o  determine the  response t o  a uni t   value a t  
x . .  Note that  for  'n '   degrees  of  freedom  system  the T matr ix  i s  of  order 
2d x 2n so t h a t   t h e r e  w i l l  be 2n of   these  operat ions.  If they are ca r r i ed  
ou t   i n   o rde r ,   t he  first n columns represent   the   responses   to   un i t   d i sp lace-  
ments a t  t h e   s t a t i o n  j (1 < j 6 n )  , the   second n columns r ep resen t   t he  
responses t o  unit v e l o c i t i e s  a t  s t a t i o n  j (1 < j 6 n) .  
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RFSULTS AND DISCUSSION 

F i n i t e  Element Applications 

The theory on the   app l i ca t ion  of T rans i t i on   ma t r i ces   t o  a system 
with many degrees  of  freedom  has  been  applied t o   s e v e r a l   s t r u c t u r a l   i d e a l i s a -  
t i o n s .  The idea l i s a t ions   be ing  made by a p p l y i n g   t h e   f i n i t e  element  displace- 
ment formulat ion  discussed  in   the  previous  sect ion.  By t h i s  means t h e  whole 
problem may be  deal t   wi th  on a numerical   basis  and  the  formulation and 
solut ion  of   the  equat ions are achieved  without  any  resort  being made t o  normal 
modes. To f u r t h e r   i l l u s t r a t e   t h e   s t a b i l i t y   c r i t e r i o n  mentioned i n   t h e  first 
s e c t i o n   t h e   e f f e c t   o f   s t e p  s i z e  on t h e  m a x i m u m  values  for  the  forced  response 
of a simply  supported  plate are shown. The advantages  of an 8th  order  
Transit ion  matrix  over a standard  4th  order Runge-Kutta procedure  are   a lso 
i l l u s t r a t e d .  

Fig. 3 shows a comparison  of  Transit ion  matrix  solutions with some 
exper imenta l   resu l t s  which  were obtained from reference ( 7 ) .  These were f o r  a 
rectangular  plate  of  dimensions 18" x 7.5" x 0.282"~  with one  of  the  edges  of 
dimension 7.5" clamped; the  other   edges  were  f ree .  The p l a t e  w a s  i d e a l i s e d  
by using  four  equal  rectangular  elements,  each  element  having  four unknowns 

w,  aw/ax,  aw/ay, a w/axay per  corner.  When the   appropr ia te   cons t ra in ts  
had  been  applied  the  result ing  system had 19 degrees  of  freedom. The agree- 
ment between the  experimental  and t h e o r e t i c a l  results i s  good,  though t h e  
r e l a t ive   f r equenc ie s   o f   t he  upper modes t o   t h e   l o w e s t  mode f o r   t h e   i d e a l i s e d  
system seem t o  be  high. This  i s  possibly due t o   t h e   f a c t   t h a t   o n l y  a small 
number of  elements  were  used and therefore   over   cons t ra in ing   the   sys tem;  it 
could  also  be due t o   t h e   n e g l e c t   o f   r o t a r y   i n e r t i a  when forming  the mass 
matrix.  

2 

There. i s  an  important  aspect  of t h i s  apparently  simple  system which 
should  be  mentioned.  Nearly 2000 mul t ip l ica t ions  by the  Transi t ion  matr ix  
were  necessary to  obtain  the  response  diagram shown in   F ig .  3. This was because 
the  e igenvalues   for   the  system were wel l   separated,   and,   s ince  the  s tep  s ize  
was governed by the  highest   e igenvalue,  it had t o  be small compared t o   t h e  
l a r g e s t   p e r i o d   t o  satisfy t h e   s t a b i l i t y   c r i t e r i o n .  A more complex system may 
not  have t h i s  p rope r ty   fo r   t he  same number of  degrees  of  freedom, as t h e  
e igenva lues   t end   t o   l i e   c lo se r   t oge the r ;   consequen t ly  a complete  period  of 
the  fundamental mode  may be  obtained with a much smaller number of  steps.  

Figs.  4 and 5 compare the  response  of a p l a t e   w i th  a l l  edges  simply 
supported  and a p l a t e   w i th  all edges  clamped, t o  a normally  incident ' N '  w.ave. 
Both p l a t e s  had t h e  same dimensions: 36.0" x 18.0" x  0.25". The simply  sup- 
po r t ed   p l a t e  w a s  i dea l i s ed   w i th  4 elements and t h e  clamped p la t e   w i th  9 
elements. When the  appropriate  constraints  had  been  applied  both  configura- 
t i ons   t hen  had t h e  same number of  degrees  of  freedom. Due t o  the  addi t iona l  
s t i f f n e s s   t h e  clamped p la te   has  a smaller  response and the  f requency  of   the 
fundamental mode i s  almost  double  that  for  the  simply  supported  plate.  (Note: 
the   responses  shown in   F igs .  4 and 5 do n o t   r e f e r   t o   t h e  same point.  For t h e  
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simply  supported  plate   the  response was  a t  t h e   c e n t r e ,  x = g", y = 18", f o r   t h e  
clamped p la t e   t he   r e sponse  w a s  at x = 6",  y = 12". The clamped p la te   response  
at t h e   p l a t e   c e n t r e  would then  be  about  50% more than   those  shown.) I n   c o n t r a s t  
t o   t h e   c a n t i l e v e r   p l a t e   s y s t e m   t h e   r e s p o n s e   h i s t o r i e s  shown i n  Fig. 4 were 
obtained  with  only 200 s t e p s ;   t h i s  i s  due t o   t h e   n a t u r a l   f r e q u e n c i e s   l y i n g  
c loser   toge ther ,   and   the  smaller number of  degrees  of  freedom (16 cf .  19) .  
The curves shown in   F ig .  5 ( a )  are shock  spectra which were obtained by ex- 
t r a c t i n g   t h e  m a x i m u m  va lues   for   the   d i sp lacement   and   ve loc i ty   responses   to  
'N '  waves of   d i f fe ren t   dura t ion .  On the   shock   spec t r a   t he  maximum value i s  
seen t o  occur when t h e   d u r a t i o n   o f   t h e  'N'  wave is  e q u a l   t o   t h e   p e r i o d  of t h e  
fundamental mode. In   F ig .   5 (b)  a f a c t o r  N g i v e s   t h e  number of   pos i t ive  

peaks  which  occur i n  one  period  of  the  fundamental  mode; t h i s   g i v e s  some 
indication  whether  higher modes a re   pa r t i c ipa t ing   i n   t he   r e sponse .  The 
results show that   the   displacement   responses  are e s s e n t i a l l y  unimodal  and 
most of   the   ve loc i ty   responses   bu t   for  a few cases  where  the  pulse  duration 
i s  shor t .  

P 

Fig. 6 shows t h e   e f f e c t   o f   i n c r e a s i n g   t h e   s t e p  s i z e  on t h e  maximum 
value  of   the  response  of  a s imply  supported  plate   to   an 'N'  wave. A com- 
par ison i s  made between the   8 th   o rde r   T rans i t i on   ma t r ix   r e su l t s  and t h e  
resu l t s   ob ta ined   us ing  a s tandard  4th  order  Runge-Kutta process for t h e   f o r -  
ward in t eg ra t ion  (Appendix 1). A l l  o f   t h e  results have  been  normalized  by 
d iv id ing  by the   Trans i t ion   mat r ix  results a t  t h e  smallest s t e p   s i z e   u s e d  
( h  = 1.0).  Two po in t s  are i l l u s t r a t e d ;  f i rs t ,  the   Trans i t ion   mat r ix   g ives  
a g a i n   i n   s t e p   s i z e   b e f o r e   t h e   o n s e t   o f   i n s t a b i l i t y ;   s e c o n d ,   w i t h i n   t h e  
s tab le   range   the  maximum value   for   the   Trans i t ion   mat r ix   so lu t ion   does   no t  
diverge so  much for   increas ing   s tep  s ize .  This   suggests   greater   accuracy.  
The po in t s   p lo t t ed  beyond the   s t ab le   r ange  were the   va lues   tha t   occur red  a t  
a time t h a t   t h e   s t a b l e   s o l u t i o n  gave a m a x i m u m .  These i n  themselves seem 
reasonable,  and it i s  the  subsequent  motion  which i s  divergent .   For   the 
system  considered  there was a subs tan t ia l   reduct ion   in   the   computa t ion   t ime 
pe r   s t ep  % 0.1295 seconds  cf. 0.1915 seconds  for  the Runge-Kutta. However, 
t h i s  was for  displacement  and  velocity  solutions  only;  had  acceleration 
been computed the  advantage would  not  have  been so g rea t .  

Discussion on t h e  Method 

Throughout t h i s   r e p o r t  emphasis  has  been  placed on t h e   d i r e c t   s o l u t i o n  
of   the  equat ions  of   motion  without  first evaluat ing  the  normal  modes, n a t u r a l  
f requencies   and  the  appropriate   general ised  forces .   This  i s  an  advantage 
provided  the  natural   f requencies  l i e  c lose   toge ther  and t h e  number of  modes 
a f fec t ing   the   response  i s  of   the  same order  as t h e  number of  degrees  of  freedom 
of the  ideal ised  system. However, i f  t h e  number of  degrees  of  freedom i s  
l a rge  and the   na tura l   f requencies  w e l l  separated,   the  responses  are  mainly 
a f f ec t ed  by the  lower modes of   vibrat ion.   This   being  the  case,  it would then 
be  an  advantage t o  adopt a normal mode approach  and  compute the   T rans i t i on  
matr ices   for   each  of   these as f o r  a single  degree  of  freedom.  There would 
then  be a reduct ion  in   the  s ize   of   the   problem  from  reducing  the  matr ices  
involved  and  by  increasing  the  step  size  which would previously  have  been 



governed by the   h ighes t  mode of   the   idea l i sed   sys tem.   In   p rac t ice ,   then ,   one  
of t h e  problems i s  knowing t h e  spac ing   o f   t he   na tu ra l   f r equenc ie s ;   t h i s  may 
only be obtained by solving an eigenvalue type problem first. 

The method o u t l i n e d   i n   t h i s   r e p o r t  i s  similar i n  many r e s p e c t s   t o   t h e  
Transfer matrix methods (8)  used i n   s t r u c t u r a l   a n a l y s i s ;   t h e   t r a n s f e r   i n  
these  cases   being made in   space   and   no t   i n  t i m e .  A similar technique - t h e  
Method o f  Mean Coeff ic ients  - w a s  used on a non l i n e a r  problem f o r  a system 
with a single  degree  of  freedom ( 9 1 ,  t h e  Trans i t ion   mat r ices   having   to  be re- 
evaluated a t  each  step.  A Transi t ion  matr ix   technique  has   a lso  been  used  in  
reference (10) when s t u d y i n g   t h e   s t a b i l i t y   o f  a system  with  periodic  coeffi-  
c i en t s ,   bu t   t he   con tex t  w a s  d i f f e r e n t   t o   t h a t   d i s c u s s e d   i n   t h i s   p a p e r  and  no 
t i m e  domain so lu t ions  were  evaluated. 

CONCLUSIONS 

A s t e p  by s t e p   T r a n s i t i o n  matrix method has been  presented  for   the 
so lu t ion   of  a t r ans i en t   v ib ra t ion   p rob lem  fo r  a system  with many degrees  of 
freedom. For t he   f r ee   v ib ra t ion   ca se ,  the  response a t  one i n s t a n t   i n   t i m e  
is  r e l a t e d   t o  t ha t  at a previous  s tep  by a s ing le   t r ans i t i on   ma t r ix .  This  
matr ix  i s  a funct ion  of  t h e  system mass, damping and s t i f f n e s s  and t h e  s t e p  
s i z e .  The a p p l i c a t i o n   t o  a single  degree  of  freedom  system  gave  an  almost 
exac t   so lu t ion ,   and   the  method was much s impler   to   apply  than  other   numerical  
methods.  For  forced  vibration  additional  ternls are necessary  in  the  recur- 
rence   re la t ionship   to   account   for   the   forc ing   and  t h e  higher  force time 
de r iva t ives .  If t h e   s t e p   s i z e  i s  small it i s  s u f f i c i e n t   t o   i n c l u d e   o n l y  t h e  
fo rce  and the f i r s t  de r iva t ive  by an   add i t iona l   t r ans i t i on   ma t r ix  and i n  
general  it i s  n o t   p o s s i b l e   t o   o b t a i n   t h e  same order  of  accuracy as f o r  t h e  
free vibrat ion  case.  However, fo r   fo rc ing   func t ions  w i t h  c e r t a i n   a n a l y t i c  

forms , i .e. e , s i n  k t  , cos k t ,  e t c .  , an  accurate   solut ion may be  obtained. k t  

A f i n i t e  element  displacement  technique  has  been  used t o   c o n s t r u c t  
t he   T rans i t i on   ma t r i ces   fo r   pa r t i cu la r   p l a t e   sys t ems  and seve ra l  examples  on 
the   app l i ca t ions   o f   t hese  has been  given. When a p p l i e d   t o  a c a n t i l e v e r   p l a t e  
good agreement  has  been  obtained  with some experimental results where t h e  
plate  had  been  excited  by  simple  impulses. 

For   numerical   s tabi l i ty   the  choice of  s t e p   s i z e  i s  governed by t h e  
highest  eigenvalue  of t he  system  and  the  order  of t he  Taylor  Series  used when 
computing the   Trans i t ion   mat r ix .  From t h i s  p o i n t   o f  view there  i s  no s i g n i f i -  
cant  advantage  in  going  immediately  beyond  the  5th  derivative,   though there i s  
an advantage i n  going t o  the  8th.  However, t h e  accuracy  of the method  always 
inc reases  w i t h  the   o rder   o f  the  Taylor  Series  used. 

An 8 th  order   Trans i t ion  matrix procedure  gave more accurate  results 
f o r  a l a r g e   s t e p   s i z e   t h a n  a 4 th   o rder  Runge-Kutta procedure  and there was 
also a subs tan t ia l   reduct ion   in   the   computa t ion  time per   s tep .  



APPENDIX 

The Runge-Kutta Procedure 

The Runge-Kutta procedure  which w a s  used  for  comparison  purposes i s  
given  below.  This i s  a spec ia l   appl ica t ion   of   the   genera l   t echnique   g iven   in  
re f .  (1). 

The equation of motion, 
w = - IC1-j T - rc2-J $ + ["l] c y  .. 
QJ 

i s  wri t ten  for   convenience:  .. 
w QJ = G(y, =j7, 

The method  avoids   calculat ing  the  higher   der ivat ives   by making several 
evaluat ions of G,  wi th in   the   s tep ,   h .   These  are: 

In   equat ions  A . l  ... A.3  t h e r e  are 12   mu l t ip l i ca t ions   o f   (n  x n)   matr ices  by 
a column mat r ix   p lus   subs id ia ry   addi t ions  a t  each  s tep.  With t h e  Trans i t i on  
matrices,   equation (lo), t h e r e   a r e  two ma t r ix   mu l t ip l i ca t ions  of order 
(2n x 2n ) ,  which i s  equ iva len t   t o  8 m u l t i p l i c a t i o n s  o f  o rder   (n  x n) .   This  
i m p l i e s   t h a t   t h e  Runge-Kutta  would require   about  50% more computation time 
i n   s o l v i n g  a problem o f  t h i s   t y p e .  However, because  the  matr ices  are 
smaller not so much computer s torage  space i s  required.  
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Damping 
r a t i o  Ahwit f o r  nth order   Taylor   Ser ies  

~ .. ~~ ~ " I 
P=C/Ccrit 3 4 5 6 7 a 

~ ~ ~ ~~~ ~ ~ . . ~ . " "- ~" 

0.000 

2.3 2 * 9  2.8 3 -0  3.7 4.3  0.200 
1.8 2.8 3.3 2 .1   2 -7  3.7 0.020 
1 * 7  2.8 3.3 1 .a 2 .1 0.002 
1 - 7  2 .a 3.3 2.0 2.2 

~~ 

Limiting  values o f  Ah for s t a b i l i t y .  

Order of  Taylor   Ser ies  
. . . - "" "_" 

3 4 5 6 7 a 
~. .. ~ ~~~ ~ . -~ 

Ah 1.0 1 .o 2 .o 2 .o 2.2 3.0 

Table 2. Values of Ah f o r  accuracy. 
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. .  

Step 

" 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

- ~~ 

Exact Soh. * 
Disp. 

~. . . - - " " " - 

1.0000 
.9689 
8776 

.5403 
7317 

3153 - 0707 -. 1782 -. 4161 -. 6282 -. 8011 -. 9243 
- .ggoo 

I L 

4th  Order T matrix 
Disp. vel .  

- 

1.0000 

8776 - 7317 
.5403 
.3154 
.0708 

.96a9 

- .1782 

-. 6281 
- .8011 
-. 4161 

-. 9243 
- - 9900 

0.0000 -. 2474 -. 4794 -. 6816 -. 8414 
- .9490 
-- 9975 -. 9840 
-. 9093 -. 7781 
-- 5985 
- .1417 
-. 3817 

Choudhury* 

Ref. 4 
method Met hod 

Newmask" 

1.0000 1.0000 
.9688 .9681 
.8773  .8782 
.7310 

.3138 

.7330 

.3184 
5392 5425 

.0688 

-. 6236 -. 6305 
-. 1738 -. 1805 .0746 

-. 4185 
-. 8031 

- .4114 

-. 7973 -. 9257 
- 9905 

-. 9216 -. 9889 
*These r e s u l t s  were  taken  from  reference ( 4 ) .  

Table 3. Comparison of   4 th   o rder   Trans i t ion   mat r ix   so lu t ion   wi th   exac t  
so lu t ion  and so lu t ions  by o the r  methods fo r  an undamped 
o s c i l l a t o r .  

Equation of motion: w + w = 0 ,  h = 0.25 

T matrix: 

.. 

.247396 968913 1 
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1 
1 ,o 2 .o 3P 4.0 Ah 

Rg I Variation of 2 , undonped mcilb todp =o.o 1 

3. 

2. 

I 4  
1. 
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1.0 

Jt d3 
Ins 

-1.0 

n 

I I I I 

Displacmnt at x = 16.Oins y = 0.0 ins 
impact at 8 = 6.0 ins y " 5 . 5  ins 

Displacement ot x = 16.0 ins y = 7 .S in 
impact a t  X = 8.0ins y = 3.75 ins 

Fig 3 Comparison between Experimental t Theomtical results, - t k o v  , -CXP. 
for plate with one dg cla mpcd , 



5 '  
A 
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All edqcs simply supported ' 

- u 
CI .- 
x 

I 2 3 4 ,  ' 
Duration of N wave 

Fiq 5 a) Shock rpcctm of Clamped c Simply Supported 
plates to N wave 

A A Velocity 

0 0 Displacement -B .- 5" 

k 
2 4" Si'mply Supported 1 3 

\ 
r 

X 
Y) 3" 

e 
h C la mped 
0, 2 "  
; 

A- " 

o I " P 
b 

-t- - ~ 

Z 
I 2 
I , 

I 4 
3 4 

Duration of N wave 

Fiq 5 b) Variation of Np with pulse dumtion 
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Stable range  Transition  matrix i 
} \  

Stable mngc Run* Kuttd., I 
4 

Transition matrix o stable ,. urntable 

Runqc Kutta o w o w  

Fi q 6 Comparison be tween  normalized  rnammum  responses 
obtai ncd by8 t h. order  Tra nsttian m d r  ix & 4 th. order Rungc Kutta 
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